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Abstract. Two-dimensional radiance maps from Channel 9
(∼60-90 hPa) of the Advanced Microwave Sounding Unit
(AMSU-A), acquired over southern Scandinavia on 14 Jan-
uary 2003, show plane-wave-like oscillations with a wave-
length λh of ∼400-500 km and peak brightness temperature
amplitudes of up to 0.9 K. The wave-like pattern is observed
in AMSU-A radiances from 8 overpasses of this region by
4 different satellites, revealing a growth in the disturbance
amplitude from 0000 UTC to 1200 UTC and a change in
its horizontal structure between 1200 UTC and 2000 UTC.
Forecast and hindcast runs for 14 January 2003 using high-
resolution global and regional numerical weather predic-
tion (NWP) models generate a lower stratospheric moun-
tain wave over southern Scandinavia with peak 90 hPa tem-
perature amplitudes of ∼5-7 K at 1200 UTC and a sim-
ilar horizontal wavelength, packet width, phase structure
and time evolution to the disturbance observed in AMSU-
A radiances. The wave’s vertical wavelength is ∼12 km.
These NWP fields are validated against radiosonde wind
and temperature profiles and airborne lidar profiles of tem-
perature and aerosol backscatter ratios acquired from the
NASA DC-8 during the second SAGE III Ozone Loss and
Validation Experiment (SOLVE II). Both the amplitude and
phase of the stratospheric mountain wave in the various
NWP fields agree well with localized perturbation features
in these suborbital measurements. In particular, we show
that this wave formed the type II polar stratospheric clouds
measured by the DC-8 lidar. To compare directly with the
AMSU-A data, we convert these validated NWP tempera-
ture fields into swath-scanned brightness temperatures using
three-dimensional Channel 9 weighting functions and the ac-
tual AMSU-A scan patterns from each of the 8 overpasses
of this region. These NWP-based brightness temperatures
contain two-dimensional oscillations due to this resolved
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stratospheric mountain wave that have an amplitude, wave-
length, horizontal structure and time evolution that closely
match those observed in the AMSU-A data. These compar-
isons not only verify gravity wave detection and horizontal
imaging capabilities for AMSU-A Channel 9, but provide an
absolute validation of the anticipated radiance signals for a
given three-dimensional gravity wave, based on the model-
ing of Eckermann and Wu (2005).

1 Introduction

The Advanced Microwave Sounding Unit (AMSU) is a
cross-track-scanning passive microwave sounding instru-
ment currently deployed on the NOAA-15 though NOAA-
18 meteorological weather satellites (Kidder et al., 2000)
and NASA’s Earth Observation System (EOS) Aqua satellite
(Lambrigtsen, 2003). Radiances from the AMSU-A temper-
ature channels are important inputs to operational numerical
weather prediction (NWP) systems: they improve specifica-
tions of global atmospheric initial conditions, which lead to
significant increases in forecasting skill (e.g., Baker et al.,
2005). Radiances from AMSU-A have better spatial reso-
lution than those from previous operational cross-track mi-
crowave scanners, due to a narrower antenna beam that yields
smaller horizontal measurement footprints, and more mea-
surement channels with improved radiometric accuracy. In
fact, AMSU-A produces too much fine-scale global data for
operational weather centers to cope with at present, and so
various “superobbing” algorithms must be applied to thin
these data prior to operationally assimilating them (Baker et
al., 2005).

This improved resolution and accuracy should allow
AMSU-A to resolve finer-scale atmospheric features than
earlier instruments. One focus of investigation has been
stratospheric gravity waves, which are poorly resolved by
most satellite remote-sensing instruments. Wu (2004) was
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the first to investigate this possibility experimentally by iso-
lating along-track fluctuations in radiances acquired from
AMSU-A stratospheric channels at various cross-track scan
angles. Global maps of these variances in the extratropi-
cal Southern Hemisphere showed enhancements over moun-
tains and at the edge of the polar vortex that resembled simi-
larly enhanced radiance variances from the Microwave Limb
Sounder (MLS) on the Upper Atmosphere Research Satel-
lite (UARS). Since the MLS radiance variance is known
to originate from resolved gravity wave oscillations (e.g.,
McLandress et al., 2000; Jiang et al., 2004), these correla-
tions appear to show AMSU-A resolving stratospheric grav-
ity waves.

Whereas MLS cyclically stares at or scans the limb,
AMSU-A cyclically scans the atmosphere beneath the satel-
lite at 30 equispaced off-nadir cross-track viewing angles
between ±48.33◦. This scanning pattern sweeps out two-
dimensional “pushbroom” images of atmospheric radiances
beneath the satellite, rather than the one-dimensional hori-
zontal cross sections from MLS. Wu and Zhang (2004) iso-
lated small-scale structure in AMSU-A radiances at all 30
scan angles and plotted these perturbations at the measure-
ment locations to yield a swath-scanned horizontal image of
the perturbation field. Focusing on a region off the north-
eastern coast of the USA on 19-21 January 2003, they found
plane-wave-like oscillations that appeared to capture the hor-
izontal structure of stratospheric gravity waves radiated from
the jet stream.

While correlations between AMSU-A radiance perturba-
tions and wave fluctuations observed in MLS radiances (Wu,
2004) or simulated by a mesoscale model (Wu and Zhang,
2004) certainly suggest that AMSU-A can resolve gravity
waves, they do not provide quantitative insights into why
and how wave signals manifest in these data. To provide
some theoretical insight, Eckermann and Wu (2005) devel-
oped a simplified model of the in-orbit acquisition of radi-
ances by AMSU-A Channel 9 on both the NOAA and EOS
Aqua satellites. The three-dimensional temperature weight-
ing functions that this modeling generated were in turn used
to specify how gravity waves with different temperature am-
plitudes, horizontal propagation directions, and vertical and
horizontal wavelengths manifested as oscillatory signals in
swath-scanned Channel 9 radiance imagery. These simula-
tions indicated that a lower stratospheric gravity wave which
had a temperature amplitude of �3 K, a vertical wavelength
of �10 km, and a horizontal wavelength of �150–200 km
should appear as a detectable oscillation in Channel 9 bright-
ness temperatures (i.e., above the nominal ±0.2 K noise
floor). If any of these threshold criteria is not met, the grav-
ity wave is probably not visible to AMSU-A Channel 9. The
simulations also showed how these resolved radiance signals,
when mapped horizontally, provided a two-dimensional im-
age of the wave’s horizontal structure, with some cross-track
distortions introduced due to the limb effect and variations in
footprint diameters versus scan angle.

These predicted amplitude and wavelength thresholds for
gravity wave detection by AMSU-A Channel 9 provide the
same basic guidance as previous modeling studies for other
satellite instruments (e.g., McLandress et al., 2000; Preusse
et al., 2002; Jiang et al., 2004). They are important in spec-
ifying the kinds of waves being measured and what infor-
mation these data can and cannot provide (see, e.g., Alexan-
der, 1998; Wu et al., 2005). However, this AMSU-A forward
model provides important additional guidance.

First, it models how two-dimensional gravity wave struc-
ture is both imaged horizontally and distorted in swath-
scanned AMSU-A radiances. This is an important new
satellite measurement capability, heretofore only hinted at
by a few limited observational case studies (Dewan et al.,
1998; Wu and Zhang, 2004) and never previously modeled.
Second, if the three-dimensional wavelength and amplitude
structure of the gravity wave is known, the forward model of
Eckermann and Wu (2005) makes specific predictions about
the absolute brightness temperature amplitudes that should
be seen by Channel 9. Indeed, given a complete gridded
three-dimensional temperature field, the forward model can
convert these temperatures into brightness temperature maps
that can be compared directly with the AMSU-A data. Previ-
ous models of the visibility characteristics of specific satel-
lite instruments have only been used to crudely filter model-
generated wave fields, so that the relative variations in ob-
served and modeled wave variances can be more meaning-
fully compared, such as geographical and seasonal variabil-
ity (McLandress et al., 2000; Jiang et al., 2002, 2004). No
study to date has converted model-predicted gravity wave
fields into absolute radiance oscillations whose amplitudes
and phases can be compared directly with the observed radi-
ance oscillations.

Here we attempt an absolute observational validation of
the forward modeling predictions of Eckermann and Wu
(2005) of gravity wave signals in AMSU-A Channel 9 ra-
diances. We focus on wavelike structures imaged in swath-
scanned Channel 9 radiances over southern Scandinavia on
14 January 2003. To provide estimates of three-dimensional
gravity wave temperature perturbations in this region of the
lower stratosphere on this day, we analyze high-resolution
forecast and hindcast fields from NWP models, validating
them against available suborbital observations in this region,
such as DC-8 lidar data acquired during the SAGE III Ozone
Loss and Validation Experiment (SOLVE II). We then apply
the forward model of Eckermann and Wu (2005) to convert
these validated NWP temperature fields into swath-scanned
Channel 9 brightness temperature maps, using the actual
AMSU-A scanning patterns during each of the 8 satellite
overpasses that occurred at different times on this day. These
NWP-based radiance perturbations are compared to those
measured by AMSU-A, to assess how closely the observed
horizontal structure, wavelengths, amplitudes and time evo-
lution of the measured fluctuations are reproduced.
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2 Data Sources

2.1 Advanced Microwave Sounding Unit-A

Since the companion paper of Eckermann and Wu (2005)
provides a description of AMSU and develops a model of its
Channel 9 stratospheric radiance acquisition, here we pro-
vide only a brief summary of the salient features of this in-
strument for this observational study.

AMSU-A has 15 measurement channels, 6 of which
(Channels 9–14) are stratospheric temperature channels.
Channels 9 though 14 sample wing line thermal oxygen
emissions centered at 57.290 GHz. The one-dimensional
(1D) vertical weighting functions at nadir for these channels
peak progressively higher in the stratosphere, from ∼85 hPa
for Channel 9 though to ∼2.5 hPa for Channel 14 (Kidder
et al., 2000). We analyze only Channel 9 radiances in this
study.

The AMSU-A cross-track scanning pattern consists of
j = 1 . . . 30 sequential step-and-stare measurements at equi-
spaced off-nadir beam angles βj between ±48.33◦, distrib-
uted symmetrically about the subsatellite point: see Fig. 1
of Eckermann and Wu (2005). The cross-track swath width
at stratospheric altitudes is ∼2100 km for the NOAA satel-
lites. Each scan cycle takes 8 s to complete, so that data from
successive scans are separated by ∼60 km along track given
a 7.4 km s−1 satellite velocity. At the near-nadir beam po-
sitions j = 15, 16, the half-power horizontal measurement
footprints are nearly circular with diameters of ∼48 km for
Channel 9 on the NOAA satellites. These footprints become
broader and more elliptically elongated cross-track at the off-
nadir measurement angles (Kidder et al., 2000; Eckermann
and Wu, 2005). Swath widths and footprint diameters are
somewhat smaller for the AMSU-A on EOS Aqua due to its
lower orbit altitude of 705 km compared to 833 km for the
NOAA satellites (see Fig. 6 of Eckermann and Wu, 2005).
The altitude of peak Channel 9 sensitivity increases with in-
creasing |βj | due to the limb effect (Goldberg et al., 2001;
Eckermann and Wu, 2005), to a maximum peak altitude of
∼65 hPa at the outermost scan angles (Fig. 1b; see also Fig. 4
of Eckermann and Wu, 2005). Here we analyze raw radi-
ances to which no limb adjustment procedures (Goldberg et
al., 2001) have been applied.

2.2 NASA DC-8 Lidar Data

The Langley Research Center (LaRC) aerosol lidar operates
in comanifested form with the Goddard Space Flight Center
(GSFC) Airborne Raman Ozone, Temperature and Aerosol
Lidar (AROTAL) on NASA’s DC-8 research aircraft. The
lidars transmit vertically and collect backscattered radiation
with a zenith–viewing telescope for postprocessing.

The GSFC/LaRC lidar emits laser pulses at 1064, 532, and
355 nm, the fundamental, doubled, and tripled frequencies,
respectively, from a neodymium:yttrium/aluminum/garnet

(Nd:YAG) laser. Here we study aerosol backscatter ra-
tios (ABRs) derived from GSFC/LaRC lidar backscatter at
1064 nm,

S1064 =
βaerosol + βair

βair
, (1)

where βaerosol and βair are the backscatter coefficients from
aerosol and air molecules, respectively. The lidar measures
the total backscatter βaerosol + βair: βair is derived using
atmospheric densities from meteorological analyses along
track. GSFC/LaRC lidar ABRs are issued at 75 m vertical
resolution every ∼15 s.

Stratospheric ABRs provide first–order discrimination
among different types of polar stratospheric clouds (PSCs).
PSC-free regions yield S1064 ∼1. Type I PSCs, composed of
nitric acid trihydrate (NAT, type Ia) or supercooled ternary
solutions (STS, type Ib) yield S1064 ∼3–30, whereas type
II PSCs (ice) yield S1064 ∼50–500 (e.g., Fueglistaler et al.,
2003).

We also utilize Rayleigh temperature profiles derived from
355 nm (YAG) AROTAL returns. These temperatures were
retrieved without the 387 nm Raman channel data used
in some previous AROTAL measurements (Burris et al.,
2002a), and so are prone to errors in the presence of PSCs
and sunlight (Burris et al., 2002b). Profiles are issued every
21-22 s at a vertical resolution of 150 m from just above the
aircraft to ∼60 km altitude, though the intrinsic temporal and
vertical data resolutions are somewhat coarser (Burris et al.,
2002a).

3 Models

3.1 Numerical Weather Prediction Models

To validate specific gravity waves resolved in AMSU-A ra-
diances, we would ideally compare directly with suborbital
measurements of the wave field. However, to model grav-
ity wave-induced fluctuations in the AMSU-A radiances ad-
equately, we need to know the full three-dimensional (3D)
structure of the wave field (Eckermann and Wu, 2005). Sub-
orbital gravity wave data are much too sparse to characterize
gravity waves three-dimensionally, yet without this informa-
tion these two data sets cannot be meaningfully compared
and cross-validated.

Thus, to provide the necessary 3D wave fields that can link
the AMSU-A and suborbital measurements, we analyze out-
put from three different numerical weather prediction (NWP)
models, each of which bring some unique capabilities to our
validation study. All of these models were run at high spatial
resolution in order to explicitly resolve any long wavelength
gravity wave activity that AMSU-A might be sensitive to.
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Fig. 1. (a) Vertical layer thicknesses ∆Zk of various NWP model
levels. COAMPS altitudes and thicknesses are geometric heights
for a surface altitude of 0 km, whereas NOGAPS-ALPHA and
ECMWF IFS altitudes and thicknesses are pressure heights assum-
ing a scale height of 7 km and a nominal sea-level surface pressure
of 1013.25 hPa. (b) AMSU-A Channel 9 1D vertical weighting
functions Wj(Z) for the near-nadir beams (j =15,16) and far off-
nadir beams (j =1,30) from Eckermann and Wu (2005).

3.1.1 ECMWF IFS

We use forecast and analysis fields issued operationally by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) Integrated Forecast System’s (IFS) TL511L60
global spectral model (Ritchie et al., 1995; Untch and Hor-
tal, 2004). We use global gridpoint fields on all 60 hybrid
σ–p vertical model levels from the surface to 0.1 hPa issued
on the reduced N256 linear Gaussian grid that progressively
thins the number of points around a latitude circle, from 1024
at the equator to 192 at ±80◦ latitude. Forecasts and analyses
are available every 6 hours, starting at 0000 UTC.

3.1.2 NOGAPS-ALPHA

Since the six hourly output from the ECMWF IFS proves too
sparse for precise comparisons with AMSU-A data, we per-
formed hindcasts using high resolution Navy NWP models.

Global NWP for the U.S. Department of Defense (DoD)
is provided by the Naval Research Laboratory’s (NRL)
Navy Operational Global Atmospheric Prediction System
(NOGAPS), which is run operationally at the Fleet Nu-
merical Meteorology and Oceanography Center (FNMOC)
(Hogan and Rosmond, 1991). Here we use a developmen-
tal version of the NOGAPS global spectral forecast model
with Advanced Level Physics and High Altitude (NOGAPS-
ALPHA: Eckermann et al., 2004; McCormack et al., 2004;
Allen et al., 2005).

The NOGAPS-ALPHA hindcasts performed here used a
“cold start” procedure in which global analyzed winds and
geopotential heights on reference pressure levels and a 1 ◦x1◦

grid are read in and interpolated to the model’s quadratic
Gaussian grid and hybrid σ–p levels. Initial model temper-
atures are computed hydrostatically from the geopotentials.
The model was then forwarded in time without meteorolog-
ical assimilation update cycles. To initialize our runs for
January 2003 at altitudes below 10 hPa, two different Navy
analyses were available: (a) archived operational analysis
from the then-operational Navy multivariate optimum inter-
polation (MVOI) system (Barker, 1992); (b) reanalysis fields
for this period from the NRL Atmospheric Variational Data
Assimilation System (NAVDAS) (Daley and Barker, 2001),
which assimilated AMSU-A radiances from the NOAA 15
and 16 satellites. NAVDAS with AMSU-A radiance assim-
ilation became operational at FNMOC on 9 June 2004 and
has significantly improved NOGAPS forecast skill (Baker et
al., 2005; Allen et al., 2005). While NOGAPS-ALPHA runs
using both analyses were performed and analyzed for cross-
validation purposes, here we will only show results from runs
initialized with the NAVDAS reanalysis,

From 10–0.4 hPa we initialized using FNMOC’s opera-
tional “STRATOI” analysis (see Sect. 4 of Goerrs and Phoe-
bus, 1992), whose primary data source is ATOVS temper-
ature retrievals issued by NOAA’s National Environmental
Satellite, Data and Information Service (NESDIS) (Reale et
al., 2004). From 0.4–0.005 hPa we have no Navy analy-
sis fields available for January 2003 (STRATOI was ex-
tended to 0.1 hPa in June 2003). Thus we extrapolated the
0.4 hPa STRATOI fields upwards by progressively relax-
ing them with increasing altitude to zonal-mean climatolog-
ical winds from the UARS Reference Atmosphere Project
(URAP; Swinbank and Ortland, 2003) and temperatures
from the 1986 COSPAR International Reference Atmosphere
(CIRA; Fleming et al., 1990): for algorithm details, see Eck-
ermann et al. (2004). This final global initial state is adjusted
within NOGAPS-ALPHA for hydrostatic balance then run
through a nonlinear normal mode filter (Errico et al., 1988),
to suppress potential for any spurious gravity wave genera-
tion due to unbalanced initial conditions. Surface ice con-
centrations, land/sea surface temperatures and snow depths
are also initialized using FNMOC analysis and are updated
from archived analysis every 12 hours in our model runs.

We used a T239L60 model configuration extending from
the ground up to 0.005 hPa on hybrid σ–p levels with a first
purely isobaric half level at 87.5 hPa. Model layer thick-
nesses are shown in Fig. 1a. The “standard” Rayleigh fric-
tion profile of Butchart and Austin (1998) was applied to the
upper model levels as a crude representation of mesospheric
gravity wave drag. This, along with enhanced spectral diffu-
sion and Newtonian cooling in the top two model layers, ef-
fectively suppressed downward reflection of resolved gravity
waves from the model top. We saved model fields spectrally
every hour. Gridpoint fields were obtained by retransforming
onto the 720x360 quadratic Gaussian grid (∼0.5 ◦ resolution)
at all 60 model σ–p levels.
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3.1.3 COAMPS

NRL’s Coupled Ocean/Atmosphere Mesoscale Prediction
System (COAMPS R©) is FNMOC’s regional operational
NWP system (Hodur, 1997). COAMPS hindcast runs here
used two nested 169x169 horizontal grids of 30 km and
10 km horizontal grid spacing, and 85 nonuniformly-spaced
terrain-following vertical levels (Gal-Chen and Somerville,
1975) extending to a top geometric altitude of 33 km (see
Fig. 1a). The top several kilometers contained a numerical
sponge layer to absorb upward–propagating gravity waves at
the upper boundary. As for the NOGAPS-ALPHA runs, we
performed separate COAMPS runs initialized in a cold-start
procedure using archived MVOI analyses and NAVDAS re-
analyses, with output from the latter runs only analyzed in
this study. Archived NOGAPS forecast fields were used to
specify the lateral boundary conditions every 6 hours. Out-
put fields were saved every hour on the intrinsic model grid.

The primary purpose of the COAMPS runs is to provide
higher resolution fields than the global models in order to
resolve gravity wave fields better. Thus, subsequent analysis
will focus only on the high horizontal resolution 10x10 km 2

fields from the nested COAMPS run.

3.2 AMSU-A Radiance Acquisition Model

To relate gravity waves in the three-dimensional gridded
NWP temperature fields T with those observed in Channel 9
AMSU-A brightness temperatures TB , we convert tempera-
tures into a model brightness temperature field

TBNWP (Xj , Yj) =
∫ ∫ ∫

Wj(X − Xj , Y − Yj , Z)

T (X, Y, Z)dXdY dZ, (2)

using the three-dimensional AMSU-A weighting functions
Wj(X, Y, Z) from the modeling study of Eckermann and Wu
(2005). Following their notation (see their Fig. 1), X and Y
are along-track and cross-track distances, respectively, Z is
pressure altitude, j is beam position (as defined by its cross-
track scan angle βj : see Sect. 2.1), and (Xj ,Yj) is the loca-
tion of the peak Wj(X, Y, Z) response which we take to be
the measurement location. Equation (2) is integrated over the
full range of permissable X , Y and Z values.

To evaluate Eq. (2) numerically, we must regrid the
NWP temperatures from their longitude, latitude and terrain-
following vertical levels onto the same regular Cartesian
(X, Y, Z) grid used for Wj(X, Y, Z). The next 4 paragraphs
explain how we do this.

First, we vertically interpolate the NWP temperature fields
onto a regular pressure height grid of ∆Z=0.5 km, a choice
based on the minimum intrinsic vertical model resolutions in
Fig. 1a. Weighting functions Wj(X, Y, Z) are interpolated
onto this same vertical grid.

For a given scan cycle, each of the j = 1 . . . 30 AMSU-
A radiance measurements comes registered at its ground-
level footprint longitude λ̂j and latitude φ̂j . Using spher-
ical geometry (see Fig. 16 of Eckermann and Wu, 2005),
we correct these locations by moving along the line-of-sight
ray from the surface to the ∼60-90 hPa altitude where the
relevant weighting function Wj(X, Y, Z) peaks. The NWP
fields are distributed at gridpoints (λ̂i, φ̂i). For each AMSU-
A measurement at beam position j, we compute great circle
distances di,j from these gridpoints (λ̂i, φ̂i) to this beam’s
(corrected) footprint location (λ̂j , φ̂j). We retain model tem-
peratures T (λ̂i, φ̂i, Z) only at those gridpoints i for which
di,j ≤ 300 km. Since AMSU-A footprint radii are <100 km
at every beam position (Eckermann and Wu, 2005), grid-
point fields more than 300 km from the peak of the weight-
ing function can be safely discarded as lying well outside
this beam’s field of view. This process significantly thins the
NWP field and speeds up the subsequent numerical compu-
tation of Eq. (2).

Next the scan axes (X, Y ) must be specified on the sphere.
The Y -axis vector direction is computed as the bearing angle
γj,ss from true north from the subsatellite point for this scan,
(λ̂ss, φ̂ss), to the current footprint location ( λ̂j , φ̂j). Yj is the
great circle distance dj,ss between (λ̂j , φ̂j ) and (λ̂ss, φ̂ss),
and Xj=0 (since AMSU-A does not scan along-track). For
the negative scan angles βj , we set Yj = −dj,ss.

To regrid the retained NWP temperatures T (λ̂i, φ̂i, Z)
onto the (X ,Y ) grid, we compute great circle distances d i,ss

between all the retained gridpoints i and the subsatellite
point, as well as their bearing angles γi,ss from the subsatel-
lite point. We use these di,ss and γi,ss values to compute
corresponding coordinates (Xi, Yi) using Napier’s Rules for
spherical right-angled triangles. After triangulating all the
(Xi, Yi) data, we linearly interpolate the temperatures at each
level onto a regular (X ,Y ) grid of length 380 km and resolu-
tion 5 km in both directions centered at (Xj , Yj).

With T (X, Y, Z) and Wj(X, Y, Z) now on a common
(X, Y, Z) grid, we evaluate Eq. (2) numerically using rectan-
gular integration over this entire gridded (X, Y, Z) domain.

4 Radiances and Temperatures over Scandinavia on 14
January 2003

Figure 2 plots AMSU-A Channel 9 brightness tempera-
tures TB(λ̂j , φ̂j) acquired during the ascending and descend-
ing overpasses of Scandinavia by EOS Aqua, NOAA-15,
NOAA-16 and NOAA-17 on 14 January 2003. The maps are
arranged in chronological order, with data plotted as color-
coded elliptical footprint pixels with dimensions specified by
the Channel 9 radiance acquisition model of Eckermann and
Wu (2005): see their Fig. 6.

Figure 3 plots the 6-hourly ECMWF IFS analysis temper-
atures for 14 January 2003 at 85 hPa and 65 hPa, the approx-
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Fig. 2. AMSU-A Channel 9 brightness temperatures TB(λ̂j , φ̂j)
measured during the ascending and descending overpasses of Scan-
dinavia by EOS Aqua, NOAA-15, NOAA-16, and NOAA-17.
These values (in Kelvin) are plotted as color-coded footprint el-
lipses at the measurement location: see color bar in panel a. White
curves outline these measurement footprints for every tenth scan.
Panels are arranged in chronological order, with the universal time
and satellite platform of the overpass given in the plot title.

imate vertical range of the peak AMSU-A weighting func-
tion responses at various beam positions (see Fig. 1b). Like
the brightness temperatures, the analysis temperatures tran-
sition from warmer mid-latitude values to much colder val-
ues in and around Scandinavia. McCormack et al. (2004)
showed that the very cold stratospheric temperatures over
Scandinavia on 14 January 2003 were driven by adiabatic up-
lift from an anticyclonic upper-tropospheric ridge over West-
ern Europe and a weak wave-1 stratospheric disturbance that
pushed the vortex core off the pole towards Scandinavia.
These vortex disturbances presaged a minor stratospheric
warming, which split the vortex about a week later (McCor-
mack et al., 2004) and shut off much of the early season PSC
formation and ozone loss chemistry (Feng et al., 2005).

Despite gross similarites, variations in the brightness tem-
perature maps from measurement to measurement in Fig. 2
do not correlate obviously with the analysis temperatures

in Fig. 3. Since adjacent AMSU-A measurements can be
separated by an hour or less, the 6-hourly resolution of the
ECMWF analysis temperatures is too coarse to investigate
these variations systematically, and so we turn now to hourly
temperature fields from the NOGAPS-ALPHA runs.

Figure 4 plots hindcast NOGAPS-ALPHA temperatures at
times and altitudes corresponding to those plotted in Fig. 3.
The geographical structure and temporal evolution are very
similar to the ECMWF analysis fields. In the “cold pool”
regions, NOGAPS-ALPHA shows a cold bias of ∼1-2 K rel-
ative to the ECMWF analysis, which originates mostly from
the NAVDAS fields used for initialization (not shown), which
have a 1–2 K cold bias relative to the ECMWF analysis in
these cold-pool regions. Apart from this the comparison is
very good, even down to details in the small-scale temper-
ature oscillations over southern Scandinavia and Scotland,
which we will focus on subsequently.

Next, we compute synthetic brightness temperature fields
TBNWP (λ̂j , φ̂j) from these NOGAPS-ALPHA temperatures
by evaluating Eq. (2) via the methods outlined in Sect. 3.2.
For each AMSU-A measurement in Fig. 2, we evaluate
Eq. (2) using the hourly NOGAPS-ALPHA temperature field
closest in time to this satellite overpass. Results are plotted
in Fig. 5.

Synthetic NOGAPS-ALPHA brightness temperatures in
each panel of Fig. 5 compare very well in both magnitude
and horizontal structure with the corresponding AMSU-A
data in Fig. 2. This indicates that most of the panel-to-panel
differences in Fig. 2 do not originate from biases among the
various instruments deployed on different satellite platforms.
Rather, most of the variability comes from the limb effect,
which causes the far off-nadir measurements at the edges of
the cross-track swaths to peak at ∼65 hPa, while those near-
nadir measurements in the middle of the swath peak nearer
85 hPa (Goldberg et al., 2001; Eckermann and Wu, 2005).

Thus, for example, the very cold brightness temperatures
at 0116 UTC to the west of Scandinavia in Figs. 2a and 5a
can be understood in terms of far off-nadir measurements
at the edge of the swath that measure the compact core of
cold 65 hPa temperatures in Fig. 4b. The overpass 1 hour
later in Figs. 2b and 5b measured warmer brightness tem-
peratures here since it sampled this region with near-nadir
beams which measured the significantly warmer 85 hPa tem-
peratures in Fig. 4a, while the off-nadir beams sampled the
warmer 65 hPa temperatures located either side of this cold
core in Fig. 4b.

The excellent reproduction of the measured brightness
temperatures of Fig. 2 by this synthetic field in Fig. 5 gov-
erned by NWP model output gives us confidence that both
our 3D NWP hindcast temperature fields and the 3D model
weighting functions of Eckermann and Wu (2005) are suffi-
ciently accurate to permit quantitative intercomparisons be-
tween the AMSU-A radiances and NWP temperature fields.
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Fig. 3. ECMWF IFS TL511L60 6-hourly analysis temperatures for 14 January 2003 at 85 hPa (top row) and 65 hPa (bottom row), corre-
sponding roughly to the peak altitudes of the near-nadir and far off-nadir Channel 9 weighting functions, respectively. Contour interval is
2 K and temperatures below 200 K have blue contour shading.
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Fig. 4. As in Fig. 3 but plotting hindcast fields from the NOGAPS-ALPHA T239L60 hindcast temperatures initialized with NAVDAS
reanalyses on 13 January 2003 at 1200 UTC (i.e. 12-30 hour forecast fields).
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Fig. 5. Same presentation as Fig. 2, but now plotting synthetic
Channel 9 brightness temperatures TBNWP (λ̂j , φ̂j) computed from
Eq. (2) using AMSU-A 3D weighting functions, the actual AMSU-
A scanning patterns from Fig. 2 and the hourly NOGAPS-ALPHA
temperature hindcast field T (λ̂, φ̂, Z) closest in time to each mea-
surement.

5 Gravity Waves Over Scandinavia on 14 January 2003

5.1 AMSU-A Measurements

To isolate perturbations T ′
B(λ̂j , φ̂j) from the raw brightness

temperatures in Fig. 2, we estimated a large horizontal-scale
background field T̄B(λ̂j , φ̂j) using the following algorithm.

First, we performed 11-point (∼650 km) along-track
smoothing of the radiances. These smoothed data were then
fitted cross track for each scan using a least-squares sixth-
order polynomial. These curves fitted both systematic cross-
track trends in the radiances due to the limb effect and any
instrumental biases (e.g., Wu, 2004; Eckermann and Wu,
2005), as well as geophysical gradients produced by hori-
zontal structure in the temperature fields evident in Figs. 2–5.
These fitted data were then subjected to 5-point along-track
smoothing to yield our final T̄B(λ̂j , φ̂j) field. The widths
of these along-track averaging windows and the order of the
polynominal fits were all tuned to give the best tradeoff be-
tween retaining as much long wavelength gravity wave struc-

Fig. 6. Similar presentation to Fig. 2, but showing brightness tem-
perature perturbations T ′

B(λ̂j , φ̂j) in Kelvin (see color bars). For
panels (a) and (b), the range is ±0.3 K, whereas for panels (c)–(h)
the color bar range is ±0.6 K. Maximum and minimum values for
each map are shown in the lower-right portion of each panel.

ture in the data as possible (aligned at any direction with re-
spect to the scan axis), while removing the background radi-
ance structure evident in Fig. 2 as completely as possible.

Perturbations were isolated by differencing at each mea-
surement location, i.e.,

T ′
B(λ̂j , φ̂j) = TB(λ̂j , φ̂j) − T̄B(λ̂j , φ̂j). (3)

We applied 3x3 point smoothing to these perturbation
fields to suppress gridpoint noise. Figure 6 plots maps of
T ′

B(λ̂j , φ̂j) extracted in this way from the corresponding raw
radiances in Fig. 2.

At ∼0116 UTC and 0226 UTC (panels a and b in Fig. 6),
the perturbation maps are essentially featureless. They show
what appear to be small-amplitude artifacts from incomplete
removal of background radiance structure, with peak ampli-
tudes no larger than ∼0.2-0.25 K. These values are in the
range of the absolute AMSU-A noise floor values of ∼0.15–
0.25 K (Mo, 1996; Lambrigtsen, 2003; Wu, 2004; Ecker-
mann and Wu, 2005). Thus there appears to be little or no
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Fig. 7. Panel b plots AMSU-A brightness temperature perturbations
along the horizontal trajectory plotted in (a), for all 8 overpasses
plotted in Fig. 6. Grey strip in (b) marks the range beneath the
nominal Channel 9 noise floor (NE∆T) of ±0.16 K (Lambrigtsen,
2003).

wave-like structure imaged in the Channel 9 radiances over
Scandinavia at these times.

At 0650 UTC during a NOAA-15 overpass, we see in
Fig. 6c the first suggestions of a resolved wave-like oscilla-
tion in the radiance perturbation maps over southern Scandi-
navia (note the change in color scale from ±0.3 K to ±0.6 K
in the maps at this time). In the subsequent AMSU-A over-
passes at 1033 UTC, 1221 UTC and 1229 UTC, this oscilla-
tion grows in amplitude to a maximum absolute peak pertur-
bation of ∼0.9 K in the 1229 UTC measurement from Aqua.
In the final two measurements at 1641 UTC and 2023 UTC,
the amplitude of the oscillation weakens slightly but also
changes horizontal structure, attaining a longer wavelength
that is aligned differently and has a packet width that is no-
ticeably more elongated in the along-phase direction.

Figure 7b plots brightness temperature perturbations along
the horizontal trajectory in Fig. 7a for all 8 satellite over-
passes. The 0116 UTC curve lies below nominal noise floors,
whereas the 0226 UTC curve shows a peak at 100 km just
above the nominal noise floor, indicating the initial presence
of a weak wavelike oscillation. By 0650 UTC an oscilla-
tion just above the noise is evident, which grows in ampli-
ude while maintaining the same wavelength and phase out
to 1229 UTC. The wavelength along this trajectory is ∼400-

500 km, with slight increases by 1641 UTC and 2023 UTC.

5.2 NWP Model Fields

To isolate gravity wave perturbations from temperature fields
generated by any one of our three NWP models, we use al-
gorithms similar to those just described and applied to the
AMSU-A radiances. First, the three-dimensional tempera-
ture fields at a given model time were regridded vertically
from their terrain-following model coordinates to a common
high-resolution set of constant pressure surfaces to yield a 3D
temperature field T (λ̂, φ̂, p), where p is pressure. A back-
ground temperature field T̄ (λ̂, φ̂, p) was computed at each
pressure level using a two-dimensional running average with
a width of ∼600-650 km. The precise width of this averaging
window varied slightly from model to model, due to the dif-
ferent horizontal gridpoint resolutions ∆h and the resulting
integer number of gridpoints n needed to yield an averaging
window n∆h within this 600-650 km range.

Perturbations were derived as

T ′(λ̂, φ̂, p) = T (λ̂, φ̂, p) − T̄ (λ̂, φ̂, p). (4)

The upper two rows of Fig. 8 plot T ′(λ̂, φ̂, p) fields at
p = 90 hPa from the three NWP models for +24 hour fore-
casts initialized on 13 January 2003 at 1200 UTC, valid at
1200 UTC on 14 January. They show a mountain wave oscil-
lation over southern Scandinavia with a geographical extent
and phase structure very similar to the 1200 UTC AMSU-A
brightness temperature perturbations in Figs. 6e and 6f.

The bottom panels in Fig. 8 plot altitude cross sections of
the temperature fields along the horizontal line plotted as the
black curve in the panels above, which is the same trajectory
used in Fig. 7a. Each NWP model produces a similar-looking
mountain wave temperature oscillation that grows in ampli-
tude with altitude up to 10 hPa and beyond. The horizontal
wavelength λh is ∼400-500 km and the vertical wavelength
λz is ∼12 km. The vertical range of the AMSU-A Channel 9
radiance acquisition through this wave structure is depicted
in Fig. 8j using the 1D vertical weighting functions for the
near-nadir and far off-nadir scan angles from Fig. 1b.

The most obvious difference among the three model fields
is in the wave amplitudes. At 90 hPa, NOGAPS-ALPHA
yields peak amplitudes TPEAK ∼4.5 K, ECMWF IFS yields
TPEAK ∼6 K, and COAMPS yields TPEAK ∼7 K. This
increasing trend in wave amplitudes in consistent with in-
creases in horizontal and vertical model resolution. Since
the very smallest resolved scales in NWP models have lit-
tle predictive skill (Lander and Hoskins, 1997; Davies and
Brown, 2001), NWP models smooth their gridscale orog-
raphy (Derber et al., 1998; Webster et al., 2003) and apply
scale-selective numerical damping to their prognostic fields
(Skamarock, 2004) to suppress these smallest scales. As a
result, only at horizontal wavelengths greater than ∼6–10
times the minimum horizontal gridpoint resolution ∆h do
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Fig. 8. Top row plots temperature perturbations T ′(λ̂, φ̂, p) at p = 90 hPa extracted from +24 hour forecasts from ECMWF IFS (left column),
NOGAPS-ALPHA (middle column) and COAMPS (right column) runs, using a similar map range to AMSU-A brightness temperature
perturbations in Fig. 6. See color bar in the lower-right corner of each panel for temperature range. Middle row plots same fields, but now
focused over southern Scandinavia. Contour interval is 1 K. Bottom row of plots show altitude contours of T′(λ, φ, p) along the horizontal
cross section plotted as black curve in the panels above. Negative (cold) temperature anomalies are blue, positive (warm) temperature
anomalies are red, and the contour interval is 2 K (zero contour is omitted). Cross sections of topographic surface elevations are shaded in
gray. Panel j replots AMSU-A Channel 9 1D vertical weighting functions from Fig. 1b.

waves appear in these models without significant attenuation
of their amplitudes (Davies and Brown, 2001; Skamarock,
2004). Vertical resolution differences in Fig. 1a also con-
tribute, though previous studies suggest they are secondary
to horizontal resolution for gravity waves in the extratropics
so long as the vertical wavelength is sufficiently long (e.g.,
O’Sullivan and Dunkerton, 1995; Hamilton et al., 1999).

Previous studies of Scandinavian stratospheric mountain
waves in global and mesoscale models have shown that the
resolved wave amplitudes in the global model can be un-
derestimated by anywhere up to 50-80%. Hertzog et al.
(2002) analyzed a stratospheric mountain wave over south-
ern Scandinavia with a much shorter horizontal wavelength
than here (λh∼200 km) and a slightly shorter vertical wave-
length (λz∼10 km). While the estimated wave amplitude
at ∼20 hPa was ∼9K, the wave resolved in the ECMWF
IFS TL319L60 analyses had an amplitude of only 1.5 K
and the horizontal wavelength was overestimated. TL319

corresponds to ∆h of ∼60 km on the N160 reduced linear
Gaussian grid. Since this λh∼200 km wave spans only 3–4
ECMWF gridpoints, it is not surprising that it amplitude was
significantly underestimated (Skamarock, 2004).

A mountain wave with wavelengths closer to the current
example occurred over northern Scandinavia on 26 January
2000: NWP forecasts yielded λh ∼400 km, λz ∼10 km and
TPEAK ∼9 K at 30 hPa (Dörnbrack et al., 2002; Fueglistaler
et al., 2003; Eckermann et al., 2005). Eckermann et al.
(2005) found that the wave temperature amplitude in the
TL319L60 ECMWF IFS forecast fields was 50% lower than
in a mesoscale model run (see also Fueglistaler et al., 2003).
In this case, the horizontal wavelength λh ∼400 km spans
around 6–7 ECMWF gridpoints, bringing it into the 6∆h–
10∆h transition zone where Skamarock (2004) found that
dynamics were resolved but somewhat suppressed in energy.

Our λh∼400-500 km mountain wave in the ∆h=10 km
nested COAMPS run spans 40–50 horizontal gridpoints. Ac-
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Fig. 9. Solid black curve with white stripe shows the estimated 3D
trajectory of the radiosonde launched from Stavanger on 14 Janu-
ary 2003 at 1200 UTC. Surface shading shows topographic eleva-
tions from the ETOPO5 database. Contours show zonal winds in
m s−1 (positive values are eastward) at 59.75◦N from the +24 hour
NOGAPS-ALPHA hindcast. The latitude-height projection of the
3D radiosonde trajectory is plotted in gray with white stripe.

cording to Skamarock (2004), COAMPS should accurately
simulate this wave, and thus for now we will take its sim-
ulated wave amplitude to represent the true wave ampli-
tude. The TL511 ECMWF spectral resolution corresponds
to ∆h∼40 km on the reduced N256 linear Gaussian grid,
making our λh∼400-500 km wave a 10∆h oscillation in
these fields and placing at the high end of the 6–10∆h transi-
tion zone where amplitudes are not greatly suppressed (Ska-
marock, 2004). A comparison of Figs. 8a and 8c bears this
out. NOGAPS-ALPHA’s T239 spectral resolution yields a
gridpoint resolution on the 720x360 quadratic Gaussian grid
of ∼55 km at the equator, though the intrinsic resolution to
zonal wavelengths is nearer 80 km at the equator. This places
our wave in NOGAPS-ALPHA fields somewhere in the 5-
9∆h range where we expect some significant amplitude un-
derestimatation (Skamarock, 2004; Eckermann et al., 2005),
consistent with amplitude differences between Figs. 8a and
8c

5.3 Suborbital Validation of NWP Model Fields

For a more direct and objective assessment of the fidelity of
the gravity waves in these NWP fields, we now compare them
directly to suborbital measurements of the lower stratosphere
over southern Scandinavia on 14 January 2003.

5.3.1 Radiosonde

Figure 9 plots the estimated 3D trajectory of the routine RS80
Vaisala radiosonde sounding made from Stavanger/Sola
(58.86◦N, 5.65◦E) on 14 January 2003 at 1200 UTC. The
calculation uses the radiosonde horizontal winds from this
ascent and assumes passive frictionless advection of the bal-
loon as it ascends at a constant assumed velocity of 5 m s−1

(Lane et al., 2000). The inferred ground trajectory (dotted
gray curve in Fig. 9) takes this balloon through the regions of
largest stratospheric gravity wave amplitudes evident in the
NWP model fields in Fig. 8. Assuming an ontime 1200 UTC
launch, we estimate the balloon reached 90 hPa just before
1300 UTC.

The contours in Fig. 9 show the NOGAPS-ALPHA
+24 hour (1200 UTC) zonal winds at 59.75◦N. They re-
veal strong surface westerlies of ∼20 m s−1 that increase
with height to a tropopause jet stream exceeding 60 m s−1,
and a wave-induced horizontal velocity oscillation of around
±10 m s −1 in the stratosphere superimposed on mean west-
erlies of 30–40 m s−1. The strong westerly flow at all al-
titudes is consistent with surface forcing of quasi-stationary
mountain waves and free propagation of those waves into the
stratosphere (i.e., no critical level). The wave phase lines
slope downward on progressing eastward, as in the temper-
ature cross sections in Figs. 8g–i, consistent with a quasi-
stationary mountain wave propagating upward and westward
in this eastward flow.

Observational studies often assume that gravity wave fluc-
tuations in radiosonde data can be interpreted as a purely
vertical profile through the 3D wave field directly above the
launch site. Here, however, the strong westerlies advect the
balloon substantial distances to the east. Figure 9 shows
rather clearly in this case that the radiosonde samples a sig-
nificantly different wave structure along its oblique ascent
trajectory than the purely vertical profile directly above Sta-
vanger, an issue highlighted in some previous observational
studies of mountain waves using radiosonde data (e.g., Shutts
et al., 1988; Lane et al., 2000). Thus our model-data com-
parison in Fig. 10 compares the radiosonde zonal winds U ,
meridional winds V and temperatures T with corresponding
1200 UTC fields from the 3 NWP model runs that were sam-
pled along the 3D radiosonde trajectory in Fig. 9.

The NWP wind and temperature profiles in Fig. 10 are
close to the radiosonde data at all altitudes. The stratospheric
wave oscillation is most prominent in the zonal winds in
Fig. 10a. The model fields reproduce its amplitude and phase
quite well, given the uncertainties in the actual balloon trajec-
tory, model errors and slight time mismatches between NWP
fields and the radiosonde. Though the wave appears more
weakly in the meridional wind and temperature profiles, the
NWP fields match the amplitude and phase structure well in
these profiles too.

The upper-level radiosonde temperatures in Fig. 10c are
extremely cold. The final radiosonde measurement of
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Radiosonde Comparison for STAVANGER 5.7oE, 58.9oN, 14 January 2003 1200 UTC
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Fig. 10. Grey circles connected by solid black curve show data acquired from the 14 January 2003 1200 UTC radiosonde sounding from
Stavanger: (a) zonal winds; (b) meridional winds; (c) temperatures. Blue curves show output from the +24 hour ECMWF IFS operational
forecast, the +24 hour NOGAPS-ALPHA hindcast, and the +24 hour COAMPS hindcast, all valid for 1200 UTC on 14 January 2003,
computed along the 3D radiosonde trajectory in Fig. 9. Red curves in (c) show nominal threshold temperatures TICE and TNAT for
formation of ice and nitric acid trihydrate, respectively, assuming typical stratospheric values of 5 ppmv of water vapor and 10 ppbv of nitric
acid (Hanson and Mauersberger, 1988; Marti and Mauersberger, 1993).

179.6 K near 19 hPa is only∼1 K warmer than the record low
stratospheric radiosonde temperature of 178.6 K reported by
Dörnbrack et al. (1999) from 35 years of soundings from So-
dankylä (67.4◦N, 26.7◦E) in northern Finland (though this
record value was subsequently eclipsed in January 2001: see
Kivi et al., 2001). Since Stavanger/Sola lies some 8.5◦ equa-
torward of Sodankylä, this low temperature is unusual and or-
dinarily might be questioned given that it was the final mea-
surement acquired just prior to the balloon bursting. How-
ever, the NWP model profiles computed along its ascent tra-
jectory in Fig. 10c strongly suggest that the data here are
reliable, and that these cold temperatures result from passage
of the balloon through the cooling phase of a large-amplitude
stratospheric mountain wave.

5.3.2 NASA DC-8 Flight

Red curves in Fig. 10c show that these very cold tempera-
tures at 20 hPa lie below the frost point temperature T ICE ,
which should cause type II (ice) PSCs to form here if nucle-
ation material is present. Aerosol lidar data acquired from a
NASA DC-8 flight on this day allow us to test this inference,
and to validate the NWP model fields further.

During January 2003 the DC-8 was operating from Kiruna
airport (67.8◦N, 20.3◦E) in northern Sweden, in support of
NASA’s second SAGE III Ozone Loss and Validation Exper-
iment (SOLVE II; see McCormack et al., 2004). The cold
synoptic stratospheric conditions and stratospheric mountain

wave activity over southern Scandinavia on 14 January 2003
were both forecast several days beforehand using ECMWF
IFS fields and the NRL Mountain Wave Forecast Model
(MWFM), extending similar in-field wave forecasting efforts
inaugurated for SOLVE during 1999-2000 and reported by
Eckermann et al. (2005).

NAVDAS 925 hPa geopotential heights at 1200 UTC in
Fig. 11a show that the wave forcing on 14 January was driven
by a compact polar low whose core moved rapidly eastward
across central Scandinavia, bringing with it strong surface
westerly flow across the southern Scandinavian Mountains.
The near-zero surface winds over central Scandinavia in the
core of the low and weak surface easterlies across northern
Scandinavia account for the confinement of the stratospheric
wave activity to the south, since little mountain wave activity
is forced over central Scandinavia, while any waves gener-
ated to the north are absorbed at upper tropospheric critical
levels as the flow transitions from surface easterlies to upper
tropospheric and stratospheric westerlies.

The SOLVE II forecasts for 14 January predicted PSCs
forming within the cold phases of mountain waves over
southern Scandinavia. Based on this forecast guidance, a
DC-8 flight from Kiruna was devised containing a south-
ward leg to fly beneath these forecast wave PSCs and pro-
file them with onboard lidars. The final DC-8 flight track is
plotted in blue in Fig. 11a, with filled circles marking every
30 min along the flight segment from 0600-0930 UTC. The
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Fig. 11. (a) Blue curves show DC-8 flight of 14 January 2003, with
period from 0600–0930 UTC highlighted with thicker curve and
30 min markers. Red curve shows horizontal radiosonde trajectory
from Fig. 9. Contours show 1200 UTC 925 hPa NAVDAS ana-
lyzed geopotential heights. (b) S1064 from GSFC/LaRC aerosol
lidar from 0600–0930 UTC. Gray strips omit data where DC-8
turned in (a) to roll angles > 5◦ which tilted the lidar beam off
zenith. Color bar scale is logarithmic. (c) Temperatures T along
DC-8 flight track from NOGAPS-ALPHA +19 hour forecast, valid
at 0700 UTC, plotted versus model geopotential height. Contour
color scale is shown beneath panel e. (d) as for (c) but plotting mean
temperatures T̄ . Gray contours show pressure surfaces in hPa. (e)
as for (c) but plotting temperature perturbations T ′, the difference
field between (c) and (d). Contour interval is 2 K, positive values
are red and negative values are blue.

radiosonde trajectory from Fig. 9 is plotted in red. We see
that the DC-8 flew beneath the cold 20 hPa stratospheric re-
gion sampled at the end of the radiosonde trajectory just after
0700 UTC, some 5-6 hours before the radiosonde sampled
this region. From the AMSU-A data in Fig. 6c, the moun-
tain wave appeared to be present in this region at 0700 UTC
when the DC-8 arrived, but had a weaker amplitude than at
the time of the radiosonde intercept at 1200-1300 UTC.

Figure 11b plots S1064 from the GSFC/LaRC lidar returns
(see Sect. 2.2) from 0600 UTC to 0930 UTC, a flight segment
marked with the thicker blue line in Fig. 11a. Extensive PSC
aerosol was measured in a number of thin tilted layers in the
20–26 km altitude range. Isolated yellow–red regions where
S1064 is ∼50–200 likely indicate ice (type II) PSCs.

Figure 11c plots temperatures T (λ̂, φ̂, Zgeo) from the
NOGAPS-ALPHA +19 hour hindcast (valid at 0700 UTC)
along this DC-8 flight track. Here we have profiled the fields
as a function of model geopotential height Zgeo rather than
pressure height Z , to permit more direct comparison with the
geometric altitude registration of the lidar data. The coldest
temperature contours ≤190 K are color coded, and correlate
impressively in altitude and variation with flight time with
the lidar data in the panel above. In particular the isolated re-
gion of large S1064 at 25 km at 0700 UTC is colocated with
a compact region of the coldest NOGAPS-ALPHA tempera-
tures of ∼184 K, plotted as red contours. This 25 km altitude
corresponds to pressures of ∼18–20 hPa (see grey contours
in Fig. 11d). From Fig. 11a we see that this isolated type
II PSC layer measured at 0700 UTC in panel b occurs at
the same geographical location intercepted 5–6 hours later
by the radiosonde, which measured very cold temperatures
T < TICE in Fig. 10c that should form ice PSCs. Thus
the radiosonde, lidar and NWP temperature data all cross-
validate at this location.

AROTAL Rayleigh temperature profiles are also available
from this flight. However, the presence of sunlight and PSC
aerosol yielded noisy retrieved temperatures with large errors
or data gaps within and below the PSC layers. Thus we focus
on a 5 min flight interval starting at 0649 UTC when S1064 in
Fig. 11b is small at all altitudes just prior to the intercept of
the ice PSC at ∼0700 UTC. AROTAL temperatures for this
period are plotted in Fig. 12 alongside the NOGAPS-ALPHA
and ECMWF IFS temperature profile closest in time and lo-
cation. The grey region in Fig. 12 marks altitudes where PSC
layers were observed earlier in the flight in Fig. 11b, and thus
contain aerosol which can contaminate the retrieval. Indeed,
the cold temperature “biteout” in the data at 21 km in Fig. 12
resembles the structure of the PSC-contaminated retrieved
Rayleigh temperature profile shown in Fig. 7 of Burris et al.
(2002b). Thus we view AROTAL temperatures in this region
as suspect. Above this grey strip (Z≥23 km), we assume
more PSC-free air that yields a more accurate retrieved tem-
perature. Specifically, at 25 km the AROTAL temperatures
drop to a minimum of ∼184 K, which again agrees well with
the NOGAPS-ALPHA temperatures in Fig. 11c and 12 and

www.atmos-chem-phys.org/acp/0000/0001/ Atmos. Chem. Phys., 0000, 0001–21, 2005
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Fig. 13. Same presentation as in Fig. 11c, but profiling temperatures
from (a) COAMPS +19 hour hindcast, valid at 0700 UTC, and (b)
NOGAPS-ALPHA +24 hour hindcast, valid at 1200 UTC. Contour
color scale is shown above panel a.

is consistent with the ice PSC encountered minutes later at
this altitude by the DC-8.

We speculated that the mountain wave perturbations pro-
duced the very cold 20 hPa temperatures in this region. To
assess this, we split the NOGAPS-ALPHA temperature field
into its component background field T̄ (λ̂, φ̂, p) and perturba-
tion field T ′(λ̂, φ̂, p) from Eq. (4), and plot each in Figs. 11d
and 11e, respectively, along the DC-8 flight track. The back-
ground temperatures show a gently sloping layer of cold tem-
peratures at 22–24 km that explains a small part of the large-
scale PSC tilting evident in the aerosol data, but little else.
Clearly the omitted wave component produces most of the
observed structure in these PSC layers. The perturbation
temperatures in Fig. 11e show that the ice PSC at 0700 UTC
is produced by a mountain wave-induced temperature per-
turbation that cools this region by about 6–8 K. This then is
clearly a mountain wave–induced ice PSC.

The minimum NOGAPS-ALPHA temperature in
Figs. 11c and 12 of ∼184 K is at or just slightly above the
20 hPa frost point temperature shown in red in Fig. 10c.
That ice PSCs were measured here suggests that wave
amplitudes were underestimated in the NOGAPS-ALPHA
run, consistent with our earlier inferences based on its
T239L60 resolution. To assess this, Fig. 13a plots corre-
sponding 0700 UTC temperatures from the COAMPS run,
which show a thicker layer of much colder temperatures
at 0700 UTC due to larger wave amplitudes in this higher
resolution model.

At 1200-1300 UTC when the radiosonde entered this re-
gion, the minimum 1200 UTC NOGAPS-ALPHA tempera-
ture along the radiosonde trajectory in Fig. 10c was ∼180 K,
significantly colder than the 184 K in Fig. 11c. This sug-
gests that the wave in the NOGAPS-ALPHA run grew sig-
nificantly in amplitude from 0700 UTC to 1200 UTC, consis-
tent with what the AMSU-A data in Fig. 6 appear to show. To
assess this, Fig. 13b plots corresponding NOGAPS-ALPHA
temperatures along the DC-8 flight trajectory using the +24
hour forecast fields, valid at 1200 UTC. We see that the
minimum temperatures are now 180 K, 4 K cooler than in
Fig. 11c, indicating a growth in peak wave amplitude of
∼4 K from 0700 UTC to 1200 UTC, and again consistent
with the 179.2 K radiosonde temperature measured at 19 hPa
in Fig. 10c.

6 Brightness Temperature Perturbations from Forward
Modeled NWP Temperature Fields

Having validated the NWP temperature fields against avail-
able suborbital data, we now insert these fields into Eq. (2)
to derive anticipated AMSU-A Channel 9 brightness temper-
ature perturbations, which we compare against the observed
AMSU-A perturbations. This represents our approach to val-
idating the gravity wave signals in AMSU-A Channel 9 radi-
ances.

Atmos. Chem. Phys., 0000, 0001–21, 2005 www.atmos-chem-phys.org/acp/0000/0001/
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Fig. 14. Top row shows brightness temperature perturbations T ′
BNWP

(λ̂j , φ̂j) computed from Eq. (5) using 1200 UTC NWP temperature

perturbation fields T ′(λ̂, φ̂, p) from (a) ECMWF IFS, (b) NOGAPS-ALPHA, and (c) COAMPS runs using AMSU-A scan pattern from
the NOAA-16 1221 UTC overpass. Actual brightness temperatures extracted from these AMSU-A measurements are replotted in (d) from
Fig. 6e. Bottom row shows same sequence of plots for the 1229 UTC EOS Aqua overpass data. Gray borders in (c) and (f) show the regional
COAMPS domain. Color bar scale (±0.6 K) is given at the top-left of panel a. Maximum and minimum values for each map are shown in
the lower-right portion of each panel.

6.1 Forward Modeled NWP Temperature Perturbations

We begin with direct forward modeling of the NWP wave
temperature perturbation fields T ′(λ̂, φ̂, p) to yield a bright-
ness temperature perturbation field

T ′
BNWP

(Xj , Yj) =
∫ ∫ ∫

Wj(X − Xj , Y − Yj , Z)

T ′(X, Y, Z)dXdY dZ. (5)

Similar calculations for idealized 3D wave temperature os-
cillations were performed by Eckermann and Wu (2005).

Our calculations here use the orbital scan data from
the AMSU-A overpasses as outlined in Sect. 3.2. Fi-
nal T ′

BNWP
(λ̂j , φ̂j) maps incorporated the same 3x3 point

smoothing applied to the AMSU-A perturbations in Fig. 6.
Figure 14 plots resulting T ′

BNWP
(λ̂j , φ̂j) fields for AMSU-

A 1221 UTC measurements from NOAA-16 (top row) and
1229 UTC measurements from EOS Aqua (bottom row),
based on 1200 UTC (+24 hour forecast) T ′(λ̂, φ̂, p) fields
from ECMWF IFS, NOGAPS-ALPHA and COAMPS. The
corresponding AMSU-A data from Fig. 6 are reproduced in
the right panels of Fig. 14 for comparison.

The synthetic NWP T ′
BNWP

(λ̂j , φ̂j) maps all show a
wave oscillation over southern Scandinavia that matches the
AMSU-A data well in location, horizontal extent, orienta-
tion and phase. In terms of amplitude, the ECMWF IFS
amplitudes are close to the measured values. The NOGAPS-
ALPHA amplitudes are smaller, consistent with expected un-
derprediction of wave amplitudes in these T239L60 runs, as
discussed in Sect. 5.2. The COAMPS amplitudes are fairly
close to the EOS Aqua AMSU-A observations, but somewhat
larger than the NOAA-16 AMSU-A observations.

Indeed, despite using the same 1200 UTC T ′(λ̂, φ̂, p)
fields, all the resulting T ′

BNWP
(λ̂j , φ̂j) amplitudes in Fig. 14

are systematically larger for the NOAA-16 scan pattern than
for the EOS Aqua scan pattern. This is despite the fact that
the lower orbit altitude of EOS-Aqua compared to NOAA-
16 yields smaller horizontal footprints that should make
EOS Aqua AMSU-A measurements slightly more sensitive
to gravity waves of a given scale than those on the NOAA
satellites (Eckermann and Wu, 2005).

The smaller EOS Aqua T ′
BNWP

(λ̂j , φ̂j) amplitudes in
Fig. 14 arise due to the height variation of the wave tem-
perature amplitudes in the NWP models. As shown in the
bottom row of Fig. 8, the wave temperature amplitudes in all
3 models decrease between 80-90 hPa and 50–60 hPa. For
example, the corresponding maximum ECMWF IFS ampli-
tude at 60 hPa is 4.8 K compared to the 6.3 K at 90 hPa
in Fig. 8a. The wave in the NOAA-16 1221 UTC overpass
data lies near the center of the scan pattern and so is ob-
served by the near-nadir beams whose weighting functions
peak near 80–90 hPa. Conversely, the wave is located to-
wards the right edge of the EOS Aqua scan pattern, where
it is observed by off-nadir beams which peak at higher al-
titudes (see Fig. 8j). The weaker NWP model temperature
amplitudes at these higher altitudes lead to a weaker NWP
brightness temperature perturbation for the EOS Aqua scan.

In contrast to the model fields, the observed AMSU-A per-
turbation amplitudes are slightly larger for the EOS Aqua
overpass in Fig. 14g than for the NOAA-16 overpass in
Fig. 14d. This suggests that, while the NWP models have
captured the wave structure and mean wave amplitudes quite
well, the actual vertical variation in wave amplitudes over
the 50-90 hPa range may have differed from the model pre-
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Fig. 15. Same presentation as Fig. 14, but now plotting NWP brightness temperature perturbations derived by extracting them from mean
values via Eq. (6).

dictions.

6.2 Perturbations Isolated from Forward Modeled NWP
Temperatures

Next we perform more realistic forward modeling by using
the raw NWP model temperature fields to simulate a bright-
ness temperature field TBNWP (λ̂j , φ̂j) using Eq. (2), as in
Fig. 2. Then, we apply exactly the same data reduction algo-
rithms to these brightness temperature fields that we applied
to the AMSU-A brightness temperature data in Sect. 5.1, first
deriving a background field T̄BNWP (λ̂j , φ̂j) and then, fol-
lowing Eq. (3), computing perturbation fields

T ′
BNWP

(λ̂j , φ̂j) = TBNWP (λ̂j , φ̂j) − T̄BNWP (λ̂j , φ̂j). (6)

Finally, 3x3 point smoothing is applied to these perturbation
fields. Differences between perturbation fields calculated us-
ing this method and those calculated in Sect. 6.1 provide
some feel for how well the numerical data reduction meth-
ods in Sect. 5.1 isolate gravity wave perturbations from raw
AMSU-A radiances.

Figure 15 plots NWP perturbation brightness temperatures
calculated using this method for the same set of 1200 UTC
fields and AMSU-A scans shown in Fig. 14. Oscillatory
structure that closely resembles the measurements (panels d
and g) is reproduced in all the NWP-based radiance fields
over southern Scandinavia. On comparing with correspond-
ing panels in Fig. 14, we see that T ′

BNWP
(λ̂j , φ̂j) amplitudes

here are ∼10–25% smaller. Thus, wave perturbations are
isolated well using these data reduction procedures, being
only slightly suppressed in amplitude. ECMWF IFS ampli-
tudes in Fig. 15 are slightly smaller than the measured values,
and NOGAPS-ALPHA amplitudes are significantly smaller
at the negative (cold) wave phase. COAMPS amplitudes are
very similar to the EOS Aqua observations, but slightly larger
than the NOAA-16 observations. More precise comparisons
with data are provided shortly.
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Max = 0.071 K

(b) NOGAPS-ALPHA T’
BNWP

 0200 UTC

Min = -0.220 K
Max = 0.256 K

(c) NOGAPS-ALPHA T’
BNWP

 0700 UTC

Min = -0.284 K
Max = 0.393 K

(d) NOGAPS-ALPHA T’
BNWP

 1000 UTC

Min = -0.409 K
Max = 0.544 K

(e) NOGAPS-ALPHA T’
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Fig. 16. Similar presentation to Fig. 6, but showing brightness tem-
perature perturbations T ′

BNWP
(λ̂j , φ̂j) derived via Eqs. (2) and (6)

from the hourly NOGAPS-ALPHA temperature hindcast field to the
satellite overpass in question. Values are in Kelvin (see color bars):
for panels (a) and (b) the range is ±0.3 K, whereas for panels (c)–
(h) the color bar range is ±0.6 K. Maximum and minimum values
for each map are shown in the lower-right portion of each panel.
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Figure 16 plots T ′
BNWP

(λ̂j , φ̂j) maps based on NOGAPS-
ALPHA temperature fields at times closest to the corre-
sponding measurements from all 8 AMSU-A overpasses in
Fig. 6. Many aspects of the measurements in Fig. 6 are re-
produced in Fig. 16. For example, at 0100-0200 UTC the
perturbation maps look very similar despite showing no obvi-
ous wave perturbations over southern Scandinavia and small
amplitudes near nominal AMSU-A noise floors of ∼0.15-
0.2 K. At ∼0700 UTC the wave appears weakly overly south-
ern Scandinavia, then grows in amplitude during the period
0700–1200 UTC. The horizontal wavelength, geographical
extent, orientation and phase all agree well with observed
fluctuations in Fig. 6. At 1700 UTC and 2000 UTC the
wave phase fronts are rotated clockwise compared to ear-
lier times, the packet width is broader, the wavelength is
longer, and the oscillation is dominated by a large-amplitude
cold phase that extends farther northward and southward:
all these features are seen in the observed maps in Figs. 6g
and 6h. The main differences are in the amplitudes. For
the first 6 panels, the NOGAPS-ALPHA brightness temper-
ature amplitudes in Fig. 16 are smaller than those observed
in Fig. 6. Whereas the largest observed perturbation ampli-
tudes occur at ∼1200 UTC in Fig. 6, the largest NOGAPS-
ALPHA brightness temperature amplitudes in Fig. 16 occur
at 1700 UTC and 2000 UTC. This is due (at least in part)
to the longer horizontal wavelength at these later times (see,
e.g., Fig. 7b), which NOGAPS-ALPHA can explicitly simu-
late at T239L60 with less amplitude attenuation (Skamarock,
2004).

Since the T239L60 NOGAPS-ALPHA runs underestimate
this wave’s amplitude, we repeated these calculations using
the hourly COAMPS fields. However, the regional COAMPS
domain complicates these calculations. Specifically, when
the numerical extraction methods used for AMSU-A data
are applied to model brightness temperatures within this re-
gional COAMPS domain only, they produce edge effects at
the lateral boundaries which severely contaminate the esti-
mated perturbation fields. To circumvent this issue, we gen-
erated artificial temperature fields at measurement locations
outside the COAMPS domain by averaging COAMPS tem-
peratures that were within 200 km of the measurement point
under consideration. If less than 50 COAMPS gridpoints val-
ues were within 200 km of the measurement point, we av-
eraged the 50 nearest gridpoint temperatures. We did this
at each model level, then converted this artifical tempera-
ture profile into a brightness temperature by integrating verti-
cally using the vertical AMSU-A weighting function Wj(Z).
Once a full map of brightness temperature data was gener-
ated (both model-based fields inside and artificial fields out-
side the COAMPS domain), we proceeded as before, com-
puting means and then isolating fluctuations using Eq. (6).

Figure 17 plots these COAMPS-based T ′
BNWP

(λ̂j , φ̂j)
maps. The main differences from the NOGAPS-ALPHA
fields in Fig. 16 are the larger amplitudes, as expected. These
COAMPS fields agree quite well with AMSU-A data from
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Fig. 17. Same presentation as Fig. 16, but showing brightness
temperature perturbations T ′

BNWP
(λ̂j , φ̂j) derived from hourly

COAMPS temperature fields. Gray curve shows borders of the
COAMPS domain. Black curves in panels (e)-(h) reproduce the
cross section from Figs. 7a and 8 along which brightness tempera-
tures are profiled in Fig. 18.

the corresponding panels of Fig. 6. Overall, the largest
COAMPS brightness temperature amplitudes are slightly
larger than those observed in Fig. 6. Like the observations,
the COAMPS fields return largest brightness temperature
amplitudes at 1200 UTC, with slightly smaller values at later
times.

To provide more quantitative comparisons, Fig. 18 plots
observed and model-generated brightness temperature per-
turbations for the final four AMSU-A measurements, com-
puted along the longitude-latitude trajectory previously used
in Figs. 7 and 8 and replotted for reference in panels e–h of
Fig. 17. Generally there is impressive agreement in ampli-
tude and phase between the observed and model-generated
brightness temperature fluctuations in all four panels, with
only slight phase differences between observed and model
fields evident for the final 2023 UTC NOAA-17 overpass.
The close agreement between these model-generated and ob-
served brightness temperature oscillations in Fig. 18 pro-
vides an absolute validation of the gravity wave detection and
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(b) EOS Aqua 1229 UTC Cross Section
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(c) NOAA-15 1641 UTC Cross Section
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(d) NOAA-17 2023 UTC Cross Section
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Fig. 18. Black curves show AMSU-A brightness temperature per-
turbations as a function of horizontal distance from left to right
along the horizontal trajectory plotted in black in Figs. 7a and 17e–
h, for overpasses of (a) NOAA-16 at 1221 UTC, (b) EOS Aqua
at 1229 UTC, (c) NOAA-15 at 1641 UTC, and (d) NOAA-17 at
2023 UTC. Green curves in (a) and (b) show synthetic brightness
temperature perturbations based on 1200 UTC (+24 hour forecast)
ECMWF IFS temperatures. ECMWF IFS curves are omitted from
panels (c) and (d) since the 1800 UTC fields closest in time to
these measurements were not available from the archives. Blue and
red curves show synthetic brightness temperature perturbations de-
rived from hourly NOGAPS-ALPHA and COAMPS fields plotted
in Figs. 16 and 17, respectively.

imaging capabilities of AMSU-A Channel 9 radiances sug-
gested by the modeling study of Eckermann and Wu (2005).

7 Summary and Conclusions

This study has focused on structure in lower stratospheric
radiances acquired from AMSU-A Channel 9 during 8 satel-
lite overpasses of southern Scandinavia on 14 January 2003.
On removing large-scale horizontal structure from the raw
“pushbroom” radiance imagery, plane wave-like oscillatory
structures were revealed over southern Scandinavia with hor-
izontal wavelengths of ∼400-500 km and amplitudes of up to
∼0.9 K. Modeling studies by Eckermann and Wu (2005) in-
dicated that long-wavelength large-amplitude gravity-waves
within the measurement volumes scanned by AMSU-A can
produce this type of radiance structure. In such cases, this
structure represents a quasi-horizontal measurement cross
section through the 3D gravity-wave oscillations near the
60-90 hPa peak in the Channel 9 weighting function. If
validated, such measurements would provide an important
new horizontal imaging capability for stratospheric gravity
waves.

To test this hypothesis, we first accessed 3D temperature
fields for 14 January 2003 from forecast and hindcast runs
from a suite of high-resolution NWP models. We simulated
Channel 9 radiance acquisition from these temperature fields

using actual AMSU-A scanning patterns from each satellite
overpass. In each case, the radiance map that resulted was
very similar in overall structure to the raw imagery. This
provided preliminary validation of the 3D AMSU-A Chan-
nel 9 temperature weighting functions of Eckermann and Wu
(2005) that were used to perform these forward-model con-
versions.

Next we removed large-scale horizontal structure from the
NWP temperature fields to isolate small-scale perturbations.
Large-amplitude gravity waves over southern Scandinavia
were revealed in all three NWP model runs. These waves
were generated by surface flow across the southern Scandi-
navian Mountains and propagated into the stratosphere. At
90 hPa, they had peak temperature amplitudes of ∼5-7 K,
horizontal wavelengths of ∼400-500 km and vertical wave-
lengths of ∼12 km. Horizontal cross sections at 90 hPa
showed 2D oscillatory temperature structures that were very
similar to those seen in the AMSU-A radiances.

To validate these NWP fields objectively, we first com-
pared the models’ horizontal winds and temperatures to those
acquired from a 1200 UTC radiosonde ascent. The resolved
gravity wave in the NWP fields produced oscillations along
the 3D radiosonde ascent trajectory that agreed closely in
both amplitude and phase with similar oscillations in the ra-
diosonde data. Next we profiled NWP temperatures along a
NASA DC-8 flight segment over southern Scandinavia and
compared them with vertical profiles of aerosol backscat-
ter coefficients and temperatures acquired by onboard li-
dars. Wave-induced minima in the NWP temperatures corre-
sponded closely in time and altitude with polar stratospheric
clouds and temperature minima seen in the lidar profiles. In
particular, we showed definitively that this gravity wave pro-
duced the high-altitude ice PSC measured at ∼0700 UTC on
this flight.

Finally, using the 3D Channel 9 weighting functions of
Eckermann and Wu (2005) and AMSU-A scan patterns from
each of the 8 overpasses, we derived radiances from these 3D
NWP wave temperature oscillations using forward-model in-
tegrations. In the first experiment, we simply scanned the
NWP temperature fluctuations to acquire a corresponding
AMSU-A brightness temperature oscillation. In the second,
more realistic experiment, we scanned the raw NWP tem-
perature field to acquire radiances, then removed the back-
ground radiance to isolate fluctuations using the same algo-
rithms used to process the observed radiances. In both cases,
radiance oscillations were produced from the resolved grav-
ity waves in the NWP temperature fields that showed similar
horizontal wavelengths, phase alignments, amplitudes and
time variations from 0000-2000 UTC to those observed in the
AMSU-A data. One-dimensional cross sections through the
2D wave structure revealed excellent amplitude and phase
agreement between observed and simulated radiance oscilla-
tions.

These findings prove that AMSU-A can both resolve and
image lower stratospheric gravity waves in its Channel 9 ra-
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diances. They also formally validate the forward model pre-
dictions of Eckermann and Wu (2005) regarding anticipated
brightness temperature oscillations for a 3D gravity wave
of given wavelengths and temperature amplitude. Given
the success for Channel 9, this same modeling and valida-
tion approach could be extended to the other 5 AMSU-A
stratospheric temperature channels, which would then pro-
vide validated horizontal imagery on long-wavelength grav-
ity wave structures through the entire stratosphere (see, e.g.,
Wu and Zhang, 2004).

This AMSU-A horizontal imaging capability can provide
much-needed global information on gravity wave horizon-
tal wavelengths and horizontal propagation directions in the
stratosphere, which are critical inputs to stratospheric grav-
ity wave drag (GWD) parameterizations in NWP and climate
models (Kim et al., 2003). Since suborbital vertical pro-
filing instruments and orbital limb sensors can measure the
vertical wavelengths of stratospheric gravity waves they re-
solve, then combining such a measurement with contempora-
neous horizontal imagery from AMSU-A can fully character-
ize the three-dimensional structure of the gravity wave, pro-
viding it has wavelengths long enough to be visible to both
instruments. This 3D wavelength characterization would in
turn permit accurate estimates of important additional con-
straint parameters for GWD parameterizations, such as ver-
tical fluxes of horizontal pseudomomentum densities.
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